NATURAIGE[®

Unpeptized Bentonite

HIGHER FLUID VISCOSITY \& GEL STRENGTH

Naturalgel ${ }^{\circledR}$ is an unpeptized bentonite Isodium montmorillonite). Naturalgel has the unusual property of expanding several times its original volume when placed in water. The result is higher fluid viscosity, gel strength, and solids suspending ability. Bentonite can be added up to 20% by volume by weight of cement. Above 6\%, the addition of a dispersant is usually necessary to reduce the slurry viscosity and gel strength.

As shown in the table below, the slurry density decreases and the yield increases quickly with bentonite concentrations. High bentonite concentrations tend to improve fluid loss control; however the compromise is higher cement permeability and lower compressive strength. Naturalgel can also be used as an extender at elevated temperatures.

Bentonite $\%$	Slurry Weight $\mathrm{kg} / \mathrm{m}^{3}$	Mix Water $\mathrm{m}^{3} / \mathrm{ton}$	Slurry Yield $\mathrm{m}^{3} / \mathrm{ton}$
0	1893.3	0.440	0.757
2	1785.4	0.547	0.870
4	1713.5	0.653	0.984
6	1665.6	0.759	1.097
8	1593.7	0.867	1.218
10	1569.7	0.971	1.323
12	1521.8	1.078	1.440
16	1461.9	1.291	1.880

MIXING \& HANDLING

The extending properties of bentonite can be greatly enhanced if the material is allowed to completely hydrate in the mix water prior to slurry mixing. The presence of high concentrations of calcium ion in the aqueous phase of cement slurry inhibits the hydration of Naturalgel. For further safety and handling instructions consult Material Safety Data Sheet.

WHMIS: Controlled (see SDS) TDG: Not regulated
Packaging: 50 kg bags

PHYSICAL PROPERTIES:

Appearance: Grey powder - odorless Bulk Density: $960 \mathrm{~kg} / \mathrm{m} 3$ Particle Size: 80\% passing 200 mesh (75μ)
pH (5\% Suspension): 9.1 Loss of Ignition: 4.4\%

CHEMICAL PROPERTIES:

Silicon Oxide $\left(\mathrm{SiO}_{2}\right): 61 \%$ Aluminum Oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right): 18.1 \%$ Ferric Oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$: 3.5% Sodium Oxide ($\mathrm{Na}_{2} \mathrm{O}$): 2.3\% Magnesium Oxide (Mg0): 1.7\% Calcium Oxide (CaO): 0.2\%
Titanium Oxide (TiO_{2}): 0.1% Potassium Oxide ($\mathrm{K}_{2} \mathrm{O}$): 0.07\% Other: 7.8\%

